
Vortex tracking in a superconductor: Tracking singularities in a discretized complex scalar field
evolving in time

Carolyn L. Phillips*,1 Hanqi Guo*,1 Tom Peterka,1 Dmitry Karpeyev,1 and Andreas Glatz2

1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA⇤
2Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

(Dated: November 20, 2015)

In type-II superconductors, the dynamics of magnetic flux vortices determine their transport properties. In
the Ginzburg-Landau theory, vortices correspond to topological defects in the complex order parameter field.
In [Phillips, et al. PRE 91 (2), 023311], a method for extracting vortices from a discretized complex order
parameter field was introduced. Using this method, at a fixed time step, each vortex (simplistically, a 1D curve
in 3D space) can be represented as a connected graph extracted from the discretized field. Here we extend this
method as a function of time as well. A vortex now corresponds to a 2D space-time sheet embedded in 4D
space-time that can be represented as a connected graph extracted from the discretized field over both space and
time. Vortices that interact by merging or splitting correspond to disappearance and appearance of holes in the
connected graph in the time direction. This method of tracking vortices, which makes no assumptions about
the scale or behavior of the vortices, can track the vortices with a resolution as good as the discretization as the
temporally evolving complex scalar field. Additionally, even details of the trajectory in between time steps can
be reconstructed from the connected graph. This form of vortex tracking allows the details of vortex dynamics
in a model of a superconducting materials to be understood in greater detail than previously possible.

I. INTRODUCTION

Many phenomena in nature can be described by the be-
havior of complex scalar functions or vector fields, ranging
from electromagnetic fields to director fields in liquid crystals,
spins in magnets, and complex order parameters in superfluids
and superconductors. Topological defects in those functions
or fields represent important features of the underlying phys-
ical system: Examples are (zero-dimensional) point defects
or monopoles, (one-dimensional) defect lines or strings, and
(two-dimensional) domain walls. Here we concentrate on de-
fect lines, which in the case of a complex scalar field are de-
fined by one-dimensional manifolds, where the phase of the
complex function is undefined. These topological singulari-
ties or defects are typically associated with circulations in the
phase gradient and are referred to simply as vortices. Sub-
stantial work has been invested in studying the dynamics of
vortices in different contexts, such as crossing and reconnec-
tion and the formation of knots in superfluid vortices [1, 2], in
light waves [3], and in fluid flows [4], as well as their evolu-
tion in more mathematically generalized contexts [5].

In type-II superconductors, an externally applied magnetic
field penetrates the system above the first critical field in the
form of flux tubes (vortices), which carry integer numbers of
flux quanta (typically one flux quantum). The magnetic flux
in the vortex core is screened by a circular superconducting
current around it. The behavior of vortices carrying magnetic
flux determines the material’s ability to sustain the dissipa-
tionless or superconducting state. When vortices move, the
system becomes dissipative, and a finite voltage drop across
the system is observed. In the Ginzburg-Landau theory of su-
perconductivity, the local superconducting properties of the

⇤ CLP and HG contributed equally to this work; corresponding author E-mail
address: cphillips@anl.gov

material are described by a spatially dependent complex or-
der parameter y , and vortices correspond to topological phase
singularities of y accompanied by a suppression of its mag-
nitude. Using the time-dependent Ginzburg-Landau (TDGL)
equations, coupled partial differential equations evolving the
scalar y field in time, one can find steady-state solutions of
the superconductor in the presence of external magnetic fields
and applied currents.

6t

FIG. 1: (Color online) Two time step images of three vortices
interacting with two pinning sites. The upper left vortex

experiences no events across the time interval. The bottom
two vortices cut and reconnect, or merge and split into two

new vortices.

In the dissipative regions of a superconductor, vortices are
dynamic objects that can nucleate and annihilate; they can cut
each other and reconnect (Fig. 1). In static situations, vortices
can be pinned by material defects inside the superconductor.
Recently, researchers have begun to use large computationally
intensive 3D simulations where macroscale phenomena can
be observed [6, 7] to study the collective dynamics of many
vortices. These simulation have been used to examine the dy-
namics of flux cutting, where two vortices move through each
other by cutting and reconnecting [8–10], and to study the im-
pact of distributions of defects, and to optimize the pinning of

2

vortices by spherical nano particles[11].
As the scale of simulations increases, visualizing and quan-

tifying the behavior of a large collection of vortices requires
the codesign of analysis techniques that can scale with the ap-
plication and even improve the resolution with which dynam-
ics are observed. In Ref. [12], a method for extracting the
topological defect lines from a data set of complex scalars de-
fined over a mesh at a single time step was introduced that per-
mits details of vortex interactions to be understood at a finer
detail than was previously possible. However, to understand
the relationship between dissipation and the dynamics of the
vortices, the details of vortex interactions need to be under-
stood over time as well as space. In order to describe an event,
such as two vortices recombining, the individual vortices par-
ticipating in the event and isolated at an initial time step must
be tracked over subsequent time steps.

Here we show how the method for numerically extracting a
vortex from a complex order parameter field can be extended
to work over time as well as space. This analysis is parameter-
less and makes no assumptions about the shape, velocity, or
behavior of a vortex. It only assumes that the simulation data
changes smoothly as a function of time. As such, this method
represents the highest resolution interpretation of the identity
and dynamics of a vortex over time that is possible given the
resolution of the simulation data set.

This analysis has applications to data sets of discretized
complex fields containing topological defects as long as the
field evolves smoothly in time. Examples of complex fields
containing topological defects include optical vortices in elec-
tromagnetic fields as well as other problems described by
the complex Ginzburg-Landau equations such as screw dis-
locations [13] cosmic strings [14], superfluidity, and Bose-
Einstein condensation; strings in field theory [15]; topological
defects in liquid crystals [16]; and models of fluid dynamics
with complicated nonlinear dynamics [17].

In Section II we provide a background discussion on vortex
tracking. In Section III we first review how topological de-
fects are extracted as a graph structure from a field discretized
over space, and then extend this method to a space-time field.
In Section IV we discuss how events can be interpreted from
the behavior of this graph structure. In Section V, we show
how this graph extraction can be implemented in an algorithm
that is a simple extension of the algorithm presented for ex-
tracting a vortex from a spatial mesh and consider the scaling
of the algorithm. In Section VI we present examples of this
algorithm applied to simulation data. In Section VII, we pro-
vide concluding remarks.

II. BACKGROUND

Feature tracking is widely studied in various computer sci-
ence research directions, such as computer vision, image pro-
cessing, and visualization, and often applied to scientific data
sets. In general, the definition of a feature depends on the
nature of the data. Most tracking methods are based on a
correspondence analysis that determines what feature in one
time frame corresponds to what feature in the next frame [18].

For example, feature correspondence can be determined by
the overlap of feature volumes or by attribute similarities in
adjacent frames. In some data sets, features can also appear,
disappear, or interact with each other over time. In TDGL
simulations of type-II superconductors, the features of inter-
est, vortices, are well-defined as singularities in the complex
scalar field. However, aside from chirality, the topology of
these singularities have no attributes that are guaranteed to be
stable over time and each vortex only has a conserved identity
between its birth, death, and interactions with other vortices.

Vortex tracking in a superconductor is closely related to
vortex tracking in fluid flows, which is an established topic
in scientific visualization [19]. While magnetic flux vortices
have a single mathematical definition, fluid vortices can be
characterized by multiple criteria, such as vorticity magnitude
and l2 [20]. For different applications and definitions, vor-
tices in fluids are extracted and tracked as vortex regions or
vortex core lines. Vortex regions can be located by applying a
criteria with a threshold to a data set and vortex core lines can
be extracted and tracked with techniques such as the parallel
vector (PV) operators [21], and feature flow fields (FFF) [22]
frameworks, respectively.

In this paper, we propose a graph-based algorithm for track-
ing vortices in a superconductor, which tracks vortices at the
same resolution as the data discretization. Compared to the
methods used for fluid flows, this method provides a more
straightforward and efficient way to track vortices in a su-
perconductor by taking advantage of the structure and eas-
ily extracted local properties of the data. In reference [12],
we demonstrated how, by exploiting the mathematical defini-
tion of topological singularity, a vortex can be traced in space.
Here we find that by extending our definition of a vortex as a
topological singularity in a field that is continuous over space
and time, a vortex can be extracted from the field as a quan-
tized object defined in space and time. Thus a vortex can be
traced over time as well. This method represents the most
information about the vortex structure that can be extracted
directly from the simulation data, against which any compu-
tationally cheaper method using approximations must be com-
pared.

III. TOPOLOGICAL SINGULARITIES EVOLVING OVER
TIME

In this section, we first review how topological singularities
are extracted as a graph structure from a spatial mesh and then
extend the method to a space-time mesh.

A. Topological singularities in a spatial mesh

The spatially and temporally discretized field that we con-
sider here results from TDGL equations solved over a struc-
tured or unstructured mesh, as introduced in Ref. [6]. The
TDGL equations solve for the complex-valued order parame-
ter y = |y|eıq , and vortices are equivalent to topological sin-
gularities in the phase field of q . Given a set of complex val-

3

ues y that have been calculated at each point of a mesh, vortex
lines can be localized by calculating integral

n =� 1
2p

I

C
—q ·dl (1)

around the closed contour C . Presuming the closed path is
sufficiently small so as not to enclose multiple vortices, then
when n, the vorticity, is a nonzero integer (usually ±1), the
path encircles a vortex line and the sign of n indicates the chi-
rality of the vortex with respect to the direction of integration.
In general, we will construct these closed paths around mesh
element faces.

For this analysis, a convenient way to represent the mesh is
as its dual graph. In the dual graph, mesh elements are nodes,
and an edge connects two nodes if the corresponding mesh
elements share a face. For illustration purposes, the nodes of
this dual graph can be located in center of each mesh element.
In a structured mesh of hexahedral elements, which, for sim-
plicity, we shall refer to as cubes, each node has six undirected
edges, one to each of six neighboring nodes. A vortex, then,
embedded in the field described over a mesh corresponds to a
set of punctured mesh element faces, that is, faces whose con-
tour integral per Equation (1) has a non-zero value. Equiv-
alently, a vortex can be described as a set of nodes and di-
rected edges that comprise a connected subgraph of the dual
graph of the mesh. The direction of an edge in this subgraph
is determined by and corresponds to the chirality of the vor-
tex. As most, indeed, nearly all, of the nodes of the subgraph
have connectivity two, the one-dimensional curve describing
a given vortex can be constructed by beginning at one node
and tracing through the graph, generating an ordered set of
spatial points. There are rare nodes that can have connectiv-
ity greater than two. These nodes correspond to locations in
the mesh where multiple vortices puncture the same mesh el-
ement. Using chirality information, vortices can be disentan-
gled in a legal but non unique way to support subsequent sta-
tistical analyses. We have subsequently found that by divid-
ing a hexahedral element into tetrahedral subelements, these
vortices can be uniquely disentangled. However, for compu-
tational convenience, such vortices may be left in unresolved
connected state.

In reference [12], a vortex object was defined as a reduced
mathematical representations of a set of one-dimensional
curves that usually corresponds to individual vortices, and less
commonly, two or more entangled vortices, in a discretized
complex scalar field. Constructing a vortex object requires
only one constraint on the data: at most only one vortex can
puncture a given mesh element face. In general, the length
scales of the mesh in a well-behaved simulation have already
been selected so that this constraint should hold. However, if
a coarser description of the mesh than the simulation mesh is
used to trace the vortices, for example, a closed path is con-
structed around multiple mesh faces, then this can be a prob-
lem.

This graph representation of a vortex (or multiple entangled
vortices), works equally well for both structured and unstruc-
tured meshes. However, for reasons of algorithmic efficiency,
related to how unstructured mesh libraries store mesh data,

sometimes it is more convenient to transform the directed sub-
graph even further into its corresponding line digraph, or a
edge-to-vertex dual, as discussed in Ref. [23], and perform all
analysis in this paradigm instead. In this new graph interpre-
tation, edges of the directed subgraph, which were punctured
faces of the mesh, are reinterpreted as nodes and nodes of
the directed subgraph, which were punctured mesh elements,
are split into a set of directed edges, one for each legal path
through the mesh element. For the purpose of this paper, we
shall stay in the directed subgraph paradigm and not the edge-
to-vertex dual paradigm.

B. Topological singularities in a space-time mesh

In the TDGL equations, y is evolved over time, and is
therefore both spatially and temporally dependent field, dis-
cretized spatially over the mesh and temporally over time
steps. A smooth evolution of y over time leads to the genera-
tion of a topological defects in planes oriented in time as well
as in space, which is discussed in more depth in the appendix
of Ref. [23]. In the model for a superconducting materials
described in Ref. [6], the magnetic field and applied super-
conducting current can also be varied over time. For a small
reformulation of Eq (1) to account for the varying fields, topo-
logical defects can be detected in closed paths around planes
oriented in time as well. Details are provided in Appendix B.

To trace a vortex in time, we now consider a structured
mesh defined over time as well as space. The discretized tem-
poral evolution of a spatially-discretized field defined over a
2D or 3D structured mesh corresponds to a 3D and 4D space-
time structured mesh, respectively. We shall start by describ-
ing the 2D structured mesh in space corresponding to 3D
structured space-time mesh initially, where the properties of
the mesh and the graph derived from the mesh are easier to
visualize.

1. 2D structured spatial mesh, 3D structured space-time mesh

For a 2D structured spatial mesh, the space-time mesh is
composed of three-dimensional cubic mesh elements. The
structure of this 3D mesh is as follows. Each cube corresponds
to a face in the 2D spatial mesh extended over a time interval
between two time steps. Each cube has six neighboring cubes.
It shares a face with each neighbor. These faces can be space
faces, that is, a face defined by four spatial coordinates at a
fixed time, or time faces, that is, a face that corresponds to a
one edge in the 2D spatial mesh extended over the time inter-
val. A 3D space-time mesh element is connected to a space-
time mesh element over the previous time interval but at the
same location in space by a space face. A 3D space-time mesh
element is connected to a space-time mesh element over the
same time interval but neighboring in space by a time face.

We can speak of a 3D space-time mesh element as be-
ing punctured by a topological defect, which is now a one-
dimensional space-time curve. A 3D structured space-time
mesh element punctured by an isolated topological defect, that

4

is, one not entangled with another topological defect inside the
mesh element, has two punctured faces.

In the dual graph of this 3D space-time mesh, nodes corre-
spond to space-time mesh elements. For illustration purposes,
we place the nodes of this dual graph in the center of the 3D
space-time mesh element. Each node in the dual graph has
six edges, corresponding to six faces connecting it to its six
neighboring 3D mesh elements. A vortex evolving over time
is a subgraph of this dual graph. A vortex is a connected set of
nodes and edges, where nodes correspond to punctured mesh
elements and edges correspond to punctured faces. The con-
nected set of nodes and edges is constructed by testing space
and time faces to see if they are punctured. Each punctured
face will “activate” a single edge of this vortex subgraph. Only
nodes with connectivity > 0 are part of the subgraph.

Unlike the subgraph described in section III A for a 3D spa-
tial mesh, the edges in this graph are treated as undirected.
The direction of an edge for the subgraph of a 3D spatial mesh
comes from the chirality of the puncture point, as determined
by whether n=±1 relative to the direction of the contour inte-
gral. For these subgraphs, chirality information can be used to
disambiguate the vortex structures inside of the rare punctured
cube with more than two punctured faces. While the chirality
of the puncture point for a time face is still well-defined, the
chirality information provides marginal extra information. For
tracking method described here, this chirality information is
not used in constructing the connected set of nodes and edges
or in any subsequent analysis.

Figure 2 and 3 illustrate how a the time evolution of a point
vortex in a 2D mesh corresponds a space-time curve embed-
ded in a 3D space time mesh, which can be represented as a
subgraph of the dual graph of the 3D space-time mesh. We use
the following notation to label nodes in the graph. If a node
corresponds to the 3D mesh element that spans the interval
(nx,nx + 1), (ny,ny + 1), and (nt ,nt + 1), where nx,ny,nt are
the discretized position and time coordinates of a mesh point,
then the corresponding node of the dual graph has the label
[nx,ny,nt].

In Fig. 2(a) a point vortex stays inside a mesh face from
t = 0 to t = 1. Its trajectory through the 3D space-time mesh
element is shown in Fig. 2(b). Two space faces, the top and
bottom of the mesh element, are punctured. In Fig. 2(c) a
dual graph is shown for the mesh element. The node [0,0,0] is
connected by edges to its six neighbors. In Fig. 2(d), the sub-
graph of the dual graph is shown. Only edges corresponding
to punctured faces and nodes that have at least connectivity
one are contained in the dual graph. Edges are labeled by the
label of their corresponding punctured faces.

In Fig. 3(a) a point vortex exits the mesh face at some time
between t = 0 and t = 1 and enters a neighboring face. Its
trajectory through the 3D space-time mesh elements is shown
in Fig. 3(b). Now two space faces and one time face are punc-
tured. Fig. 3(c) shows the resultant subgraph of the dual graph
(not shown). The three edges of the subgraph correspond to
the three punctured faces of the 3D space-time mesh elements.

[0,1,0]

[0,0,-1]

[nx,ny,nt] = [0,0,0] [1,0,0]

[-1,0,0]

[0,-1,0]

[0,0,1]

t=0 A

Bt=1

A

t=0

B

t=1

(0,0,0) (0,0,1)

[0,0,-1]

[0,0,0]

[0,0,1]

A

B

(a) Punctured face at t=0 and t=1 (b) 3D space-time
 element

(c) Dual Graph (d) Subgraph

FIG. 2: (Color online) (a) A single mesh element of a 2D
mesh is punctured at t=0 and t=1. (b) The trajectory of the
(point) vortex is a curve inside the single 3D space-time

mesh element. (c) The dual graph of the mesh element. (d)
The subgraph generated by puncture points A and B. Only

space faces were punctured.

2. 3D structured spatial mesh, 4D structured space-time mesh

For a 3D structured spatial mesh, the space-time mesh
is composed of four-dimensional hypercubic mesh elements.
The structure of this 4D mesh is as follows. Each hypercube
corresponds to a cube in the 3D spatial mesh extended over
a time interval between two time steps. Each hypercube has
eight neighboring hypercubes. It shares a volume, or cube,
with each neighbor. The faces of these cubes can be space
faces or time faces. A space-time mesh element is connected
to the space-time mesh element at the same location in space
but spanning the prior time interval by a cube with six space
faces. This cube is defined at the time step they share and
therefore corresponds to a mesh element of a 3D structured
mesh at a single time step. A space-time mesh element is con-
nected to a space-time mesh element over the same time inter-
val but neighboring in space by a space-time cube. This cube
has two space-faces, which is the same face at two bound-
ing time steps, and four time faces, corresponding to the four
edges of the space face extended over the time interval.

Every face is shared by four cubes. A space face is shared
by two space cubes, a space-time cube spanning previous, and
a space-time cube spanning the subsequent time interval. A
time face is shared by four space-time cubes spanning the
same time interval, corresponding to the four mesh elements
of the spatial mesh that share the spatial edge. We note that
if two 4D mesh elements share only a single face and not a
cube, they are not neighbors, according to our definition, just
as two diagonal 3D mesh elements that share an edge but not

5

t=0 t=1

(0,0,0) (0,0,1)
(a) Punctured faces at t=0 and t=1

A

B

t=0 A

t=1

(b) 3D space-time
 elements

B

T

B

[0,0,-1]

[0,0,0]
[1,0,0]

[1,0,1]

A

(c) Subgraph

T

FIG. 3: (Color online) (a) Two mesh elements of a 2D mesh.
The left is punctured at t=0 and the right is punctured at t=1.
(b) The trajectory of the (point) vortex is a curve inside the
two 3D space-time mesh element. A time face is punctured.
(c) The subgraph generated by puncture points A, B, and T.

a face are not neighbors.
As before, we can speak of a 4D space-time mesh element

as being punctured by a topological defect, which is now a
two-dimensional space-time sheet. A 3D structured mesh ele-
ment punctured by an isolated topological defect, that is, one
not entangled with another topological defect inside the mesh
element, has two punctured faces. Likewise a 4D mesh el-
ement punctured by an isolated topological defect has four
punctured cubes. Each punctured cube, again, has two punc-
tured faces, that is, the vortex enters and exits each cube. Each
punctured face is shared by two of the cubes.

In the dual graph of this 4D mesh, nodes correspond to
space-time mesh elements. If a node corresponds to the 4D
mesh element that spans the interval (nx,nx + 1), (ny,ny +
1), (nz,nz + 1) and (nt ,nt + 1), where nx,ny,nz,nt are the
discretized position and time coordinates of a mesh point,
then the corresponding node of the dual graph has the label
[nx,ny,nz,nt]. Each node in the dual graph has eight edges,
corresponding to eight cubic volumes connecting it to its eight
neighboring 4D mesh elements. It will be useful to think of
each edge of this dual graph as corresponding to the bundle of
six faces corresponding to the connecting cube, as illustrated
in Figure 4.

Again, a vortex evolving over time corresponds to a sub-
graph of this dual graph. A vortex is a connected set of nodes
and edges, where nodes correspond to punctured 4D mesh el-
ements and edges correspond to punctured cubes. As before,
the connected set of nodes and edges is constructed by test-
ing space and time faces to see if they are punctured. How-
ever, now each punctured face indicates four punctured cubes
and, thus, will “activate” four separate edges of the vortex sub-
graph.

[0,1,0,0] bundle of
six faces

- - not punctured
 punctured

punctured
cube[0,0,0,-1]

[0,0,1,0]

[1,0,0,0][-1,0,0,0]

[0,-1,0,0]

[0,0,0,1]

[0,0,-1,0]

[nx,ny,nz,nt] = [0,0,0,0]

FIG. 4: (Color online) A node in the dual graph of the 4D
space-time mesh is connected to 8 neighbors. The indices of
the node indicate its position in discretized space and time
and the indices of its spatial and temporal neighbors. Each

edge corresponds to a connecting cube which corresponds to
a bundle of faces. In the vortex subgraph, two of the faces are
punctured. The two punctured faces create a punctured cube,

which creates a single undirected edge connecting the two
nodes.

In general, the nodes of a subgraph that correspond to a
vortex have connectivity greater than or equal to two. For
example, a spatial vortex can only have end points at the non-
periodic boundaries of the system. A point vortex in a 2D
space evolving over time can have an end point only when
it is born or dies. In a 4D mesh, almost all punctured cubes
contain two punctured faces, one corresponding to in, and a
second corresponding to out. However, the analysis described
here works equally well for data where the topological defect
described has end points (e.g., birth and death or spatial end
points not at boundaries).

Analogous to the spatially defined mesh, tracing a vortex
object over time requires only one constraint on the data: at
most only one vortex can puncture a given mesh element time
face or space face. In general, both the discretization of the
length scale and the time scale of data from a well-behaved
simulation should be such that this constraint should hold.
However, if a coarser length scale or time step than the sim-
ulation length scale or time step is used when analyzing the
data, then this can be a problem. Also, if a single space-time
mesh element is punctured by more than one vortex space-
time sheet, we do not disentangle them. The two vortex sheets
are considered connected within our ability to resolve them.

Figures 5 and 6 illustrate how a the time evolution of a line
vortex in a 3D mesh corresponds a space-time sheet embed-
ded in a 4D space time mesh, which can be represented as a
subgraph of the dual graph of the 4D space-time mesh. In Fig-
ure 5, a section of a line vortex is initially in single 3D spatial
mesh element. From t = 0 to t = 1, the top half of the vortex
slides over to a neighboring 3D spatial mesh element. As a
result, five space faces (A, B, C, D, and E) and one time face
(T) are punctured. Red dashed lines assist visualization of the
time faces. At the bottom of Figure 5, the activated nodes and
edges of the dual graph are shown. Each edge is labeled by
the punctured face or faces that activated it. Parts of the graph
that correspond to the time interval t 2 [-1,0], [0,1], and [1,2]
are highlighted in yellow.

6

t [1,2]

t=0

t=1

(0,0,0,0)
A

B

T

C

D

E

B

B

B

B

C

A

A

A

C

A

C

C D
T

D

DD

E

E

E

E

T
T T

t [0,1]

t [-1,0]

[0,0,-1,-1]

[0,0,0,-1]

[0,0,1,-1]

[0,0,-1,0]

[0,0,0,0]

[0,0,1,0]

[0,0,-1,1]

[0,0,0,1]

[1,0,0,0]

[1,0,1,0]

[1,0,0,1]

[1,0,1,1]

U
U

U

(a)

(b)

FIG. 5: (Color online) (a) The top part of a vortex moves over
one face from t=0 to t=1. The punctured faces are labeled A,

B, C, D, E and T. (b) The resultant vortex graph structure.
Nodes in each highlighted region correspond to the same

time interval. Each edge corresponds to a punctured cube and
is labeled by the puncture faces of the cube. The graph

structure at t 2 [�1,0] is connected to the graph structure at t
2 [0,1] is connected to the graph structure at t2 [1,2].

In Figure 6, we show how the constructed graph can iden-
tify that a vortex at t = 0 is the same as the vortex at t = 1,
despite the two vortices sharing no common punctured face in
the two 3D meshes. In Fig. 6(a), a section of a line vortex
moves through multiple 3D spatial mesh elements from t = 0
to t = 1. The punctured time faces due to its movement are
shown in Fig. 6(b). As a result of the movement, four space
faces (A, B, C, and D) and four time faces (T1, T2, T3, and
T4) are punctured. Nodes and edges are labeled the same as
in Figure 5 and again, parts of the graph that correspond to
common time intervals are highlighted. The nodes and edges
activated by the T1, T2, T3, and T4 punctured faces connect
the nodes and edges activated by the space faces. Thus it is
clear that the vortices embedded in the 3D mesh t = 0 and
t = 1 correspond to a single connected subgraph of the dual
graph of the 4D mesh, and therefore are the same vortex.

The analysis above relies on two assumptions. First, the
contour integral performed over mesh faces correctly identi-
fies punctured faces, that is, edges are correctly identified. The
contour integral calculation can produce an incorrect result,
for example, if two vortices puncture the same face or if the
phase changes by more than p along an edge of mesh. Sec-

ond, the analysis assumes two distinct vortices do not cross
through the same region over the elapsed time interval. Both
of these assumptions typically hold if the analysis is based
on the smallest space and time intervals available from the
discretization of the simulation data. However, these assump-
tions can also hold for significant coarsening of the data, if the
vortices are dilute and move slowly.

In Appendix A, we show how the dual graph paradigm can
be converted to the line digraph paradigm, using the graphs of
Figure 5 and 6 as examples.

IV. INTERPRETING EVENTS FROM ANALYSIS OF THE
SPACE-TIME VORTEX GRAPH

Interpreting events does not require storing and then analyz-
ing the entire space-time graph generated over an entire sim-
ulation, but rather interpreting how the structure of the graph
evolves from time step to time step.

Given that individual vortices correspond to connected
graphs in the subgraph, we now can define the following
events:

• Continuity - (a non-event) A single vortex at one time
step is mapped to a single vortex in another. This corre-
sponds to a connected graph at one time interval that is
connected to a single connected graph at a subsequent
time interval.

• Birth - A vortex in a time step was not present in the
previous time step. It has spontaneously appeared, for
example, emitted from a boundary. This corresponds to
a connected graph at one time interval that is not con-
nected to any connected graph in the prior time interval.

• Death - A vortex in a time step is not present in the sub-
sequent time step. It has, for example, been absorbed
into a boundary. This corresponds to a connected graph
at a time interval that is not connected to any connected
graph in the subsequent time interval.

• Merge - Two or more vortices join into a single struc-
ture. This corresponds to two (or more) connected
graphs at one time interval that are connected to a single
connected graph in the subsequent time interval.

• Split - A vortex breaks into two or more vortices. This
corresponds to a connected graph at one time interval
that is connected to two (or more) connected graphs at
a subsequent time interval.

It also is possible for more complex events to occur by com-
bining the events above:

• Birth-Split (Pair Production) - Two vortices of opposite
chirality spontaneously appear. This corresponds to a
connected subgraph at a time interval that is connected
to no subgraph in the prior time interval and two sub-
graphs in the subsequent time interval.

7

T1

T2T3

T4

A

B

C

t=0

t=1

(0,0,0,0)

t=0

t=1

(0,0,0,0)

A

A

A

A

B

B

B
B

C

C

C

C

D

D

D
D

T1
T1T1 T1

T2
T2T2 T2

T3T3
T3

T3

T3
T4T4

T4
T4

t [1,2]

t [0,1]

t [-1,0]

[0,0,0,0]

[0,0,-1,0]

[0,0,1,0]

[0,0,0,1]

[0,0,1,1]

[0,0,-1,1]

[1,0,1,0]

[1,0,0,0]

[1,0,-1,0]

[2,0,1,0]

[2,0,0,0]

[2,0,-1,0]

[2,0,1,-1]

[2,0,0,-1]

[2,0,-1,-1]

D

U
U

U

(a) (b)

(c)

FIG. 6: (Color online) (a) A vortex moves multiple cells from right to left between t=0 and t=1. (b) Four punctured time faces
(T1, T2, T3, and T4) lead to a connected graph structure (c) at t2 [0,1], that is connected to the graph structure at t2 [�1,0] and

t2 [1,2]. Each edge corresponds to a punctured cube and is labeled by the punctured faces of the cube.

• Merge-Death (Annihilation) - Two vortices of opposite
chirality can annihilate each other in a simulation. This
will appear as a merge followed by a death. An anni-
hilation is equivalent to a pair production reversed in
time.

• Merge-Split (Vortex Cutting/Recombination) - Two
vortices can approach each other, touch at a point, and
then two vortices can separate. This may be an event
where one vortex can be interpreted as moving through
the other (cutting, crossing, and then reconnecting) or
an event where the two vortices swap parts when they
touch (recombination, as observed in references [8–
10]). Both of these events will appear as a merge fol-
lowed by a split.

With respect to a Merge-Split, graph analysis by itself can-
not distinguish a cut/reconnect from a recombination. To tell
one event from the other, an analysis of the most likely path
individual points along each vortices have traced through time
must be performed. This requires choosing a mapping func-
tion to map individual points on a vortex in one time step to
the points on the same vortex in the subsequent time step, and
then an assessment of whether the points associated with a
given vortex before the merge/split has mapped onto a single
vortex after the merge/split or have distributed across two vor-
tices. While such a mapping function could be built upon an
analysis of the connected graph structures, (e.g. shortest graph
path connecting a space face puncture point in one time step
to a space face puncture point in the subsequent time step),
other mapping functions based on, for example, connecting
points with the shortest displacements, or using normals to

the curve, are equally legitimate and yet may map points to
slightly different subsequent points.

In simulations with periodic boundary conditions, the in-
terpretation of events can be dependent on how one divides a
vortex with respect to the boundary conditions. The periodic
boundary condition allows a single vortex to wrap through the
simulation box multiple times and it is common to interpret
each wrapping as an independent vortex. The interpretation of
an event can depend on how the wrapped vortex is divided into
pieces. For example, if one wrapping of a vortex merges with
another wrapping, this will be interpreted as continuity, not a
merge, unless different wrappings of the vortex are treated as
independent vortices.

For our purposes here, we are only interested in events that
correspond to changes in the connected components of the
space-time graph. That is, the method described here does
not detect events such as the pinning of a vortex on an inclu-
sion, or the change in internal topology of a vortex, such as
the splintering of a giant vortex into multiple vortices [24]).
Detecting these types of events requires additional analysis of
individually tracked vortices.

V. ALGORITHM

In this section we describe an algorithm for constructing,
traversing, and interpreting the graph of Section IV that can
be easily integrated with the algorithm described in Ref. [12]
for extracting the vortex objects from a single time step.

Interpreting the events that occur across a time interval does
not require constructing a full time-interval subgraph based on

8

a 4D mesh, but can be achieved by constructing and perform-
ing operations on three subgraphs. The three subgraphs are
(1) the subgraph for the 3D mesh at time step (2) the sub-
graph for the 3D mesh at the next spatial time step, and (3) the
subgraph for the time interval mesh connecting the two time
steps. As the last mesh contains only one time-interval, it can
be projected into a 3D mesh. Thus, only minimal extensions
to the data structures and algorithms introduced in Ref. [12]
are required.

We shall subsequently refer to the subgraph constructed in
Ref. [12] as a time step graph, or TS graph. The output of
analyzing this graph is the set of connected components cor-
responding to a set of vortices, which can subsequently de-
scribed by an ordered set of points or splines. We shall refer
to the TS graph from the beginning and end of the time in-
terval as the current TS graph, T Scurrent , and next TS graph,
T Snext , respectively. The current and next TS graphs are con-
nected by a time interval graph, or TI graph. A TI graph is the
graph structure spanning a single time interval between two
time steps, or only the nodes and edges fully inside one of the
highlighted regions of Figures 5 and 6.

A TI graph has edges activated by both punctured time
faces and space faces. Thus, an important step in constructing
the TI graph is lifting the current TS graph into the TI graph.
We observe that each node in a TS graph corresponds to an
edge in the full dual graph to the 4D mesh, namely the ver-
tical edges spanning the highlighted regions in Figures 5 and
6. Thus each node in the TS graph directly “activates” a sin-
gle node in the following (or preceding) TI graph. Similarly
each edge of the TS graph corresponds to one bundle in the TI
graph and so “activates” a single edge in the TI graph. While
the meaning of the nodes and edges changes slightly in the
TS graph and the data on the direction of each edge can be
neglected, this implies that the first step in constructing the TI
graph is simply to make a copy of the current TS graph. The
rest of the nodes and edges of the TI graph are added by find-
ing punctured time faces. Connected components are found
in the TI graph by a queue-based flood-fill algorithm that also
tracks when the flooding operation finds a differently labeled
node. As a final step, the TI graph is compared to a lifted next
TS graph.

Below we provide the algorithmic steps in detail for con-
structing the two TS graphs, their TI graph and interpreting
events. The variables used below are defined in table I.

1. T Scurrent and T Snext are constructed by performing con-
tour integrals over all faces of the 3D meshes for ycurrent
and ynext . A connected component analysis is used to
find the set of connected components Ccurrent and Cnext .
Each connected component in Ccurrent and Cnext is given
a unique label, lcurrent 2 Lcurrent and lnext 2 Lnext

2. An empty TI graph is created and initialized by lifting
the nodes and edges of T Scurrent and labeling each lifted
node lcurrent , where lcurrent 2 Lcurrent is the label of its
connected component in Ccurrent

3. Using ycurrent and ynext , contour integrals are per-
formed around all time faces, one for each edge of the

TABLE I: Variables Used in Tracking Algorithm

ycurrent order parameter mesh data of current
time step

ynext order parameter mesh data of next time
step

Ccurrent The connected components of the cur-
rent TS graph

Cnext The connected components of the next
TS graph

Lcurrent Set of labels {lcurrent} assigned to each
connected component of T Scurrent

Lnext Set of labels {lnext} assigned to each
connected component of T Snext

Lnew Set of new labels {lnew}
B binary association matrix ncurrent ⇥

ncurrent , where ncurrent is the size of
Lcurrent

F : lnext ! {l1, l2, ...} mapping of each label lnext 2 Lnext to la-
bels li 2 Lcurrent [Lnew

spatial mesh. For each punctured time face, correspond-
ing edges and (unlabeled) nodes are added to TI graph.

4. A connected-component analysis of the TI graph is per-
formed by using a flood-fill algorithm from the labeled
nodes. If the graph traversal reaches a labeled node with
a different label, then the binary association matrix is
updated. That is, if i, j are the labels of the two compo-
nents, i, j 2 Lcurrent , set B(i, j) = B(j, i) = 1. Last, the
binary association matrix B is updated so that it is fully
associative. That is, if B(i, j) = 1 and B(j,k) = 1 then
B(j,k) = 1.

5. Unlabeled connected components in the TI graph are
Births [Birth I in Fig.7(b)]. They are assigned a new la-
bel lnew 2 Lnew and their nodes are labeled accordingly.

6. The mapping function F is now constructed. Iterating
over all nodes of the lifted T Snext , for a node labeled
lnext ,

6.1. If the TI graph has an equivalent node with label
l, then add l to the list lnext maps to. F : lnext !
{..., l}. If, for any l0 6= l, B(l0, l) = 1, then also add
l0 to the list lnext maps to. F : lnext ! {..., l0}.

6.2. Very rarely (in 2D cases), the TI graph may not
have an equivalent node. This is also a Birth [Birth
II in Fig.7(b)] and should be handled analogously
to (5), that is, assigned a new label lnew 2 Lnew and
added to the mapping F : lnext ! {..., lnew}.

The data structures F and B now contain all the information
necessary to determine what events occurred from the current
to the next time step.

1. Continuity: If, per F , for a given lnext 2 Lnext , F : lnext !
{lcurrent} where lcurrent 2 Lcurrent and no other l 2 Lnext

9

also maps to lcurrent , then lnext corresponds to a vortex
that has continued.

2. Births: If, per F , for a given lnext 2 Lnext , F : lnext !
{..., lnew...,}, where lnew 2 Lnew, then lnext is a birth.

3. Splits: If, per F , there is more than one lnext per F that
maps to l 2 Lcurrent [Lnew, then l has split.

4. Merges: If, per F , lnext maps to more than one l 2
Lcurrent [Lnew then lnext is a merge.

5. Deaths: If, per F , no lnext 2 Lnext maps to lcurrent 2
Lcurrent , then vortex lcurrent has died. If there is a
l0 6= lcurrent , such that B(lcurrent , l0) = 1 and l0 also died,
then a Merge-Death (Annihilation) has occurred.

The algorithm above can be easily adapted so that it can
be repeated over subsequent time steps by mapping each local
label to a globally unique label and assigning new globally
unique labels to vortices that are the result of births, merges,
or splits.

In Figure 7, we illustrate the events of Continuation [Fig.
7(a)], Birth I and II [Fig. 7(b)], Death [Fig. 7(b)], Birth-Split
[Fig. 7(c)], Split [Fig. 7(c)], Merge [Fig. 7(d)], Merge-Death
[Fig. 7(e)], and Merge-Split [Fig. 7(f)], as they would appear
using the two lifted TS graphs and the TI graph. We note that,
in general, merges, merge-splits, and splits do not occur in
2D meshes with point vortices, but do occur for 3D with line
vortices where each vortex in a TS graph is composed of many
nodes and edges.

A. Scaling and Timing

In Ref. [12], the scaling of the vortex extraction algorithm
was characterized extensively with respect to increasing the
mesh size and increasing the number of vortices present in the
system. When extracting a vortices from a single time step,
the following conclusions were drawn. In a dilute vortex state,
with a small, fixed number of vortices to find, the bulk of the
algorithm time is performing contour integrals around space-
faces. In a dense vortex state, the bulk of the algorithm time is
spent tracing the vortices in the graph, interpolating the points
of the vortices on each face, and fitting curves to the vortices.
Tracking of vortices between two time steps adds three signif-
icant computational steps, each of which is directly analogous
to calculations performed for vortex extraction. The first is
the calculation of the contour integral around all time faces.
Just as in [12], the number of calculation performed is propor-
tional to the number of points in the mesh, and will dominate
the computation for a dilute vortex state where the vortices
do not move much. The second and third additional compu-
tation is the construction of the TI graph and the flood-fill of
the TI graph. Here, the number of calculations performed is
proportional to the number of punctured time faces, or the to-
tal number of nodes in TI graph. In a dense vortex state, or
when the vortices have moved a large amount between the
two time steps, this calculation will dominate the algorithm
time. In comparison, detecting and recording events, which is

(a) Continuation

(b) Birth/Death

(c) Split

(d) Merge

(e) Merge-Death

(f) Merge-Split

Next time stepCurrent time step

Birth I

Birth II

Death

Birth-
Split

Split

FIG. 7: (Color online) Shown here are the events that can be
detected in simulation, shown for a 2D mesh. The lifted

current and next TS graphs (in 2D, a single nodes) are shown
as a � and 2, respectively. The TI graph is shown as a set of

nodes (filled circles) and edges (red lines). Only the activated
nodes and edges of the dual graph are shown.

performed on a much smaller data structure than the mesh and
graph, is computationally negligible.

In Figure 8, we measured the computation time for the three
major computational steps of tracking as a function of the
number of nodes in the TI graph. This data was generated
for a structured mesh of size 256x128x32. By choosing time
steps progressively farther apart, the vortices present in the
system moved farther and thus generate a progressively larger
TI graph. Note that minimum number of nodes of the TI graph
is always greater than zero, since the graph consists of at least
the same number of nodes as the first TS graph. As the size
of the mesh is fixed, the time required to calculate the contour
integrals is also fixed. Similarly, the time to extract the vor-
tices from the first and second time step is fixed, and is shown

10

FIG. 8: (Color online) The scaling of the tracking algorithm
is shown with respect to increasing the size of the TI graph.

A larger TI graph corresponds to faster moving or larger
vortices.

FIG. 9: (Color online) Two time steps of a set of 64 vortices
in a two-dimensional simulation flowing downwards. The

vortices in the first and second time step are circles and
squares, respectively. Also shown is the black nodes of the TI

graph that connects the vortices from the two time steps.

as a line. As the number of nodes of the TI graph increases,
the time to construct the TI graph and time to flood-fill the
TI graph increase linearly and eventually will dominate the
calculation.

We note that if the vortices have moved a small amount be-
tween the two time steps, the computational cost of tracking
a vortex between two time steps adds only a small amount of
overhead. However, if the time interval between the two time
steps is large enough that the vortices have moved a significant
amount, then constructing and flood-filling the TI graph domi-
nate the calculation. In general, using a large time interval can
compromise the accuracy of the tracking since when differ-

ent vortices have moved through the same regions over a time
interval and therefore punctured the same faces of the space-
time mesh elements, tracking results may indicate merges and
splits rather than continuity. In a system where vortices move
at a roughly steady-state velocity, it is possible to optimize
the rate of tracking so as to continuously track vortices for the
least computational effort.

We conclude that the primary cost of tracking vortices in
simulation data is not the cost of tracking in addition to ex-
tracting the vortex, but rather the frequency with which track-
ing calculations need to occur so as not to have too many
events combine over an elapsed time-interval such that se-
quence of events and identity of each vortex becomes unclear.
Optimizing the frequency of performing the tracking analysis
is a problem dependent assessment.

VI. EXAMPLES OF VORTEX TRACKING

A. Tracking vortices in 2D simulation

Figure 9 shows the tracking of a two-dimensional simula-
tion of vortices. All data was generated using the TDGL code
described in reference [6]. Here, vortices are point defects
in the y phase field. An x-directed superconducting current
applies a Lorentz force on the vortices, causing them to flow
downwards. The simulation has periodic boundaries, so vor-
tices that exit the bottom of the simulation box appear at the
top. No events, other than continuation, occur over the sim-
ulation, so the identity of each vortex is conserved. The 2D
mesh is of size 128x128. Each mesh element is 0.5 coherence
lengths, the unit of length in a TDGL simulation, on a side
and the two time steps are separated by 9.9 dimensionless time
units, defined in [6]. This represents a coarsening of the time
discretization as in the simulation the TDGL equations were
solved over 99 time steps spanning this time interval. The
lifted vortices from the first time step and second time step are
blue open circles and squares, respectively. The black nodes
of the TI graph are shown connected by red edges. Because
the vortices in the simulation are single points, they trace a
one-dimensional path in time and correspond to a connected
component where each node has connectivity one or two. The
point vortices have traveled sufficiently far over the time inter-
val that, if given only the their positions at the two time steps,
it is difficult to determine which vortex maps to which vortex
without employing assumptions about how the vortices were
moving. In comparison, using the algorithm presented above,
no assumptions about how the vortices moved is needed to
map vortices from one time step to the next.

Additionally, we note that the by indicating which edges,
corresponding to punctured time faces, of the 2D spatial mesh
were crossed, the connected graph associated with each vortex
contains details about the trajectory of the vortex between the
two time steps. Some vortices in Fig.9, for example, did not
travel in straight lines between the two time steps. By interpo-
lating within a time face, as was done for space faces in refer-
ence [12], a trajectory can be reconstructed as a sequence of
(xi,yi, ti), where each ti corresponds to the approximate time

11

the vortex crossed an edge of the 2D mesh. This method was
used to construct the smooth trajectories shown in Figure 12
of reference [23].

B. Tracking vortices in 3D simulation

Figure 10 shows two vortices in a 3D TDGL simulation that
recombine to form two new vortices by a Merge-Split. All
data was generated using the TDGL code described in refer-
ence [6]. Here vortices are 1D curves. In Figure 11, we show
how the TI graph constructed for this time interval indicates
this is a Merge-Split event. The 3D mesh is of size 256 x128
x 32, although only a small portion of it is shown. Mesh ele-
ments are 0.5 coherence lengths on each side and the two time
steps are separated by 9.0 dimensionless time units or 90 time
steps of the TDGL simulation spanning this time interval. The
lifted vortices from the first time step and second time step are
blue open circles and squares, respectively. The black nodes
of the TI graph are shown connected by red edges. The vor-
tices sweep out a connected fabric of nodes over the time in-
terval. From the top image of Figure 11, it is possible to infer
that Vortex 3 is composed of the right and left parts of Vortex
1 and 2, respectively, and Vortex 4 is composed of the left and
right parts of Vortex 1 and 2, respectively. In other words, in
this merge-split event, the two vortices swapped parts, rather
than one vortex cutting, crossing the other vortex, and reform-
ing. In the bottom of Figure 11, the swept out TI graph is
shown from a side (and Vortex 1 and 2 are not shown) so that
the connected TI graph can be seen more clearly and so it is
apparent that Vortex 3 and Vortex 4 do not intersect.

21

3
4

 xy plane view

6t

FIG. 10: (Color online) (Top) A Merge-Split that occurs
between two vortices in a 3D mesh, viewed along the z-axis.
Vortex 1 and 2 in the first time step become Vortex 3 and 4, in

the second time step by cutting and recombining.

VII. CONCLUSION

In the paper we have presented a method that can track
topological defect lines from a data set of complex scalars de-
fined over a 4D space-time mesh at the scale of the discretiza-
tion. In our application, the topological defects correspond
to vortices in a TDGL simulation of a type II superconduc-
tor. Vortices are tracked by interpreting the set of topological
defects as a connected subgraph of the dual graph of the 4D
space-time mesh. Nodes and edges of this subgraph are con-
structed by performing integrals along closed paths on faces of
the mesh. By analyzing how the graph structure changes from
one time step to the next, events such as birth, death, con-
tinuation, merging, splitting, birth-splits, merge-deaths, and
merge-splits can be detected. These events correspond to vor-
tices spontaneously appearing or disappearing in a type-II su-
perconductor and interacting with other vortices. While the
implementation described here is for a regular structured mesh
that is aligned along the Cartesian axes, we have also general-
ized this method to an unstructured mesh, where the edge-to-
vertex dual of the subgraph is used instead [23].

Because vortices lack fixed features, length scale, move-
ment pattern, or even conserved identities, standard methods
of tracking objects can quickly fail under common circum-
stances. The tracking analysis presented here only fails to
track vortices and correctly detect events if the time interval
between time steps is too large. This tracking analysis permits
vortex interactions to be understood at a finer detail than was
previously possible and allows vortices can be tracked unam-
biguously over time. This analysis also supports creating a
reduced representation of the narrative of the vortex dynam-
ics. As TDGL simulations increase in size so as to model
experimentally-relevant mesoscale superconducting phenom-
ena, it will be important to be able to on-the-fly extract and
visualize the dynamical narrative of how the vortices behave
or the volume of simulation data will quickly overwhelm stor-
age resources.

Appendix A: Converting to edge-to-vertex dual

Due to the available data structures used in some mesh li-
braries, using the edge-to-vertex dual of the graph can be more
computationally efficient for tracking vortices. This is the data
structure used in Ref. [23]. Following a simple procedure, a
dual graph for a 4D mesh can be converted to its edge-to-
vertex dual.

Concisely, in the dual graph described above, edges corre-
sponds to a bundle of punctured faces. In the edge-to-vertex
dual of this graph, each punctured face is a node and if two
punctured faces are shared in a bundle, then an edge connects
their associated nodes. In Figure 12, the edge-to-vertex dual
of the graphs in Figure 5 and Figure 6 are generated.

In the edge-to-vertex dual graph, edges between nodes that
belong the same time step can be treated as directed edges,
where the direction of the edge indicates the chirality of the
vortex puncturing the two face. The direction of the edge
is determined from the chirality of the punctured face, (i.e.

12

FIG. 11: (Color online) (Top) The Merge-Split of Figure 10 shown as a TI graph. Vortex 1 and 2 in the first time step are shown
as solid green and sold blue lines, respectively. Vortex 3 and 4, in the second time step are shown as dashed green and dashed

blue, respectively. The lifted nodes are shown as circles and squares for the first and second time step, respectively. Also shown
are the black nodes and red edges of the TI graph that connects the vortices from the two time steps. The 3D mesh is not shown.

(Bottom) Only vortices 3 and 4, the TI graph, and the lifted second time step nodes are shown, viewed along the y-axis. It is
now apparent that vortex 3 and 4 are distinct as there is a gap between them along the z-axis.

n = ±1) relative to the direction of the contour integral. We
omit indicating the direction of the edges in Figure 12 as edge
directions are not used when tracking vortices.

Appendix B: Gauge-Invariant vortex detection around space
and time contours with a varying magnetic field and current

For a superconductor described by the order parameter y =
|y|eıq , the local vorticity is defined as

n ⌘� 1
2p

I

C
dl ·—q , (B1)

along a closed contour C with C = ∂A (A being the area
enclosed by contour C).

However, while the magnitude of y is gauge-invariant, the
phase of y is not. In Ref. [12], the above line integral was
reformulated in a gauge-invariant manner as

n =� 1
2p

✓I

C
dl · (—q +K(t)x̂�A)+

Z

A
B ·da

◆
, (B2)

where A is the magnetic vector potential, K(t) is the time-
varying time integral of the electric field in the x-direction,
and B is the magnetic field.

The contour integral in Eq (B2) can be exactly calculated
over a set of connected segments {li} forming a closed path,
where q is qi�1 and qi at the endpoints of segment li, as long

as q̃ does not change by more than p along any one segment.
Namely,

n ⌘� 1
2p

m

Â
1

Dq̃i,i�1 +
Z

A
B ·da

!
(B3)

where

Dq̃i,i�1 = mod(qi �qi�1 (B4)
+(K(t)x̂� (Ai �Ai+1)) · li +Qi,i�1 (B5)
+p,2p)�p. (B6)

In the expression (B5) above, Ai and Ai�1 is the magnetic
vector potential at the endpoints of li. For completeness, we
also explicitly include the phase jump correction, Qi,i�1, for
contour segments that cross a quasiperiodic boundary, that is,
Qi,i�1 = 0 unless li crosses a quasiperiodic boundary. We
group the correction terms together as follows

Dq̃i,i�1 = mod(qi �qi�1 +Cl(x,y,z, li, t)+p,2p)�p. (B7)

As there is no gauge transformation or quasiperiodic
boundary conditions on time edges, Cl = 0 on time edges,
l =Dt t̂, of the mesh. We note, however, that for a given spatial
edge, Cl changes as a function of time if the magnetic field B
or K(t) changes. When calculating Eq (B3) around a rectan-
gular time face, that is, for a single spatial edge extended over
a time-interval, instead of calculating a magnetic flux through

13

C

D

T3

T4

A

B

C

D

E

T

t=0 t=1

A

B

T1

T2

t=0 t=1

FIG. 12: (Color online) The edge-to-vertex dual of the graph
of Figure 5 (top) and Figure 6 (bottom).

a face, a correction term is added to the summation that ac-
counts for the change in Cl for the spatial segment l over the
time-interval.

n ⌘ 1
2p

�

m

Â
1

Dq̃i,i�1 �DCt+1,t

!
(B8)

where

DCt+1,t = mod(Cl(x,y,z, l, t +1)�Cl(x,y,z, l, t)+p,2p)�p.
(B9)

Again, if the magnetic field or K has not changed over the
time interval, DCt+1,t = 0.

In the large l -limit Ginzburg-Landau solver described in
Ref. [6], the vector potential A was defined as either a linear
function in the x or in the y direction. Using the formula-
tion from Ref. [6] and [12] we can now explicitly write out
the correction term Cl(x,y,z, l, t) of Eq (B7) for contour inte-
grals with segments on a Cartesian mesh for different mag-
netic field configurations. For simplicity of notation we will

express Cl(x,y,z, l, t) as Cl(i, j,k, l, t), where x = hxi, y = hyi,
and z = hzi, where hx,hy, and hz are the lengths of the sides of
a mesh element.

For an xz magnetic field, B = [Bx,0,Bz]

l = hxx̂ : (B10)
Cl(i, j,k, l, t) = Bz(t)ȳ(j)hx +K(t)hx (B11)

l = hyŷ : (B12)
Cl(i, j,k, l, t) = Q(i, j,k, l, t) (B13)

l = hzẑ : (B14)
Cl(i, j,k, l, t) =�Bx(t)ȳ(j)hz (B15)

where

Q(i, j,k, l = hyŷ, t) = (B16)
(�LyBz(t)hxi+LyBx(t)hzk)Q((j+1)hy �Ly), (B17)

and ȳ(j) = hy(j � ny
2). The Heaviside function Q(x) is 1 if

x � 0 and 0, otherwise. The purpose of Q is to apply the
quasiperiodic phase jump correction only if the path segment
l crosses a quasiperiodic boundary.

Similarly, for an yz magnetic field, B = [0,By,Bz]

l = hxx̂ : (B18)
Cl(i, j,k, l, t) = K(t)hx +Q(i, j,k, l, t) (B19)

l = hyŷ : (B20)
Cl(i, j,k, l, t) =�Bz(t)x̄(i)hy (B21)

l = hzẑ : (B22)
Cl(i, j,k, l, t) = By(t)x̄(i)hz (B23)

where

Q(i, j,k, l = hyŷ, t) = (B24)
(LxBz(t)hy j�LxBy(t)hzk)Q((i+1)hx �Lx), (B25)

and x̄(i) = hx(i� nx
2).

Cx(i, j,k, l = hx, t) = K(t)hx (B26)
+[LxBz(t)hy j�LxBy(t)hzk]Q(ihx + l �Lx) (B27)

Cy(i, j,k, l = hy, t) =�Bz(t)x̄(i)hy, (B28)

and

Cz(i, j,k, l = hz, t) = By(t)x̄(i)hz. (B29)

and x̄(i) = hx(i� nx
2).

[1] J. Koplik and H. Levine, Phys. Rev. Lett. 71, 1375 (1993).
[2] D. Samuels, C. Barenghi, and R. Ricca, Journal of Low Tem-

perature Physics 110, 509 (1998).

[3] J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, Nature
432, 165 (2004).

[4] D. Kleckner and W. Irvine, Nature Physics 9, 253 (2013).

14

[5] M. V. Berry and M. R. Dennis, Journal of Physics A: Mathe-
matical and Theoretical 40, 65 (2007).

[6] I. Sadovskyy, A. Koshelev, C. Phillips, D. Karpeyev, and
A. Glatz, Journal of Computational Physics 294, 639 (2015).

[7] A. Glatz, H. L. L. Roberts, I. S. Aranson, and K. Levin, Phys.
Rev. B 84, 180501 (2011).

[8] V. Vlasko-Vlasov, A. Koshelev, A. Glatz, C. Phillips, U. Welp,
and W. Kwok, Phys. Rev. B 91, 014516 (2015).

[9] M. Bou-Diab, M. J. W. Dodgson, and G. Blatter, Phys. Rev.
Lett. 86, 5132 (2001).

[10] V. K. Vlasko-Vlasov, A. Glatz, A. E. Koshelev, U. Welp, and
W. K. Kwok, Phys. Rev. B 91, 224505 (2015).

[11] arXiv:1509.04212.
[12] C. L. Phillips, T. Peterka, D. Karpeyev, and A. Glatz, Phys.

Rev. E 91, 023311 (2015).
[13] I. Aranson, A. Bishop, I. Daruka, and V. Vinokur, Phys. Rev.

Lett. 80, 1770 (1998).
[14] M. B. Hindmarsh and T. W. B. Kibble, Reports on Progress in

Physics 58, 477 (1995).
[15] I. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002).
[16] E. Hamm, S. Rica, and A. Vierheilig, in Instabilities and

Nonequilibrium Structures VI, Nonlinear Phenomena and Com-
plex Systems, Vol. 5, edited by E. Tirapegui, J. Martnez, and
R. Tiemann (Springer, 2000) pp. 207–217.

[17] S. Madruga, H. Riecke, and W. Pesch, Phys. Rev. Lett. 96,
074501 (2006).

[18] F. Reinders, F. H. Post, and H. J. Spoelder, The Visual Com-
puter 17, 55 (2001).

[19] M. Jiang, R. Machiraju, and D. Thompson, in The Visualization
Handbook (Academic Press, 2005) pp. 295–309.

[20] J. Jeong and F. Hussain, Journal of Fluid Mechanics 285, 69
(1995).

[21] R. Peikert and M. Roth, in Proc. of IEEE Visualization ’99
(1999) pp. 263–270.

[22] H. Theisel and H.-P. Seidel, in Proceedings of the Symposium
on Data Visualisation 2003, VISSYM ’03 (Eurographics Asso-
ciation, Aire-la-Ville, Switzerland, Switzerland, 2003) pp. 141–
148.

[23] H. Guo, C. Phillips, T. Peterka, D. Karpeyev, and A. Glatz,
Visualization and Computer Graphics, IEEE Transactions on
22, 827 (2016).

[24] A. Kanda, B. J. Baelus, F. M. Peeters, K. Kadowaki, and
Y. Ootuka, Phys. Rev. Lett. 93, 257002 (2004).

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irre-
vocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the Govern-
ment.

